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BODY OF THE REPORT

1. THE PROBLEM

In this proposal we studied the inversion of the two
integral equations,

(1.1) u(P) u (F) + k J'Jf G(F - i') f(F') u(f') dF'

and

(1.2) E(i) = E (r) + kzff [ I -77( ' (' (' F

Here, Eq. (1.1) (rsp. (1.2)) obtains from the Helmholtz differen-
tial equation (rsp. Maxwell differential equations). Inversion
involves the reconstruction of the complex scalar function fff)
by applying inputs ul(i) (rsp. E'(r)) and then measuring u(r)
(rsp. E(r)) on the boundary of V.

2. REMARK: In carrying out the solution to these problems,
nearly all of our effort was directed towards the inversion of
Eq. (1.1) for the following reasons:

(a) Equation (1.1) is a scalar equation, and hence the amount of
work, the size of the computer program and storage, and the
amount of time required to run a program are all considerably
less than the corresponding ones for Eq. (1.2).

(b) Equation (1.2) has higher order singularities than Eq. (1.1),
and the correct treatment of these requires additional



computer code. In particular, it requires the evaluation of
integrals of the type in (1.1) as well as the evaluation of
principal value-type integrals. In the references [a.16,b.5]
above, we developed the tools which are required to handle
the principal value-type singularities.

(c) Except for the problem size and the evaluation of the prini-
pal value integrals, all other aspects of the inversion of
(1.2) are the same as those for (1.1). That is, having
developed an effective algorithm for the inversion of (1.1),
we can, in effect, "write down" the corresponding one for the
inversion of (1.2).

3. BRIEF SUMMARY OF RESULTS OBTAINED

During the duration of this proposal, we have developed
some effective algorithms for inverting Eq. (1.1), which are
described in the papers [a.4,a.5,a.6,a.10,a.ll,a.12,a.13]. The
other papers listed above, which describe work that was carried
out with at least partial support of this proposal, involved the
development of new mathematics and new algorithms that were re-
quired for the inversion of Eqs. (1.1) or (1.2).

4. MORE DETAILED SUMMARY OF RESULTS OBTAINED

Two main type of algorithms were developed for the
inversion of Eqs. (1.1) and (1.2). We summarize these for
ourposes of appliction to the inversion of Eq. (1.1) only.

4.1 Extrapolation to the Limit.

This method is described in the papers [a.10,a.ll)
above. It has the desireable feature that it does not require
the computation of the field u. Since the compution of u is
very time consuming, this, in my opinion, is by far the best
method known to date. It has the disadvantage that it requires
accurate data, but getting such data is, I believe, an engi-
neering problem which can be resolved fairly simply.

The method is based on the geometric optics approximation
to the solution of (1.1), which we can write in the form

_(4.1) =(k) 7 ( ds + O(k), k ->o.

Here rs is the source point, i.e., the location where the source
u' () is generated, or where it enters the volume V, F-- is the
detector point, where the output u(r) is measured, e is the ray
path of the sound wave , which connects Ps to a , and a is a
positive number, which depends on the smoothness of f(F) on
(fE Lip2  (e))"
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The reduction of T(k) to q (ow) was accomplished via an
extrapolation to the limit. The proof that this process actually
works was far from trivial. In the past, the effective use of
rational functions by applied mathematicians and other scientists
was based on a "gut feeling", i.e., rational approximation or
extrapolation to the limit based on rational approximation would
at times work much better than polynomial approximation, or
extrapolation to the limit based on polynomial approximation, but
no a priori conditions were previously known which would enable us
to determine exactly when one or the other actually works. The
paper (a.l] above solves this problem, i.e., it is now possible to
determine a priori when we can expect rational approximation to the
limit to work well, or when we can expect polynomial approximation
to the limit to work well. In order to show that rational extrapo-
lation to the limit works well for purposes of reducing q9(k)
above to Cp (oo), it was necessary to show that the function T is
a restriction to (Opo) of a function which is analytic and
bounded in a sector ( kC C: Ikl > k > 0, jarg(k)I < d, d > 01.
Then, under the condition that c- > 0 (indeed, we believe that
in applications one always has c- > 1/4), we can carry out
accurate extrapolation to the limit via the Thiele algorithm, and
thus accurately evaluate c(oo). For example, given qp(k)
accurate to 8 significant figures for 7 equi-spaced frequen-
cies in the range I Mh < freq < 4 Mh, (k = 2(pi)(freq)/co where
co denotes the sound speed in the medium surrounding the body),
we were able to find q(co) accurate to 8 significant figures.
However, it was necessary to know ?(k) in the above range of
frequencies to at least four significant figures; otherwise it was
not always possible to accurately determine q' (po). Various
methods were described in the papers [a.10,a.1l) for combating the
presence of noise in the data.

Once CP(c) was known, it was possible to accurately
reconstruct f(f) via ray path algorithms.

4.2. Inversion via Galerkin's Method and Solution of Nonlinear
Equations.

In these methods [a.4,a.5,a.6,a.12,a.13] Sinc approxima-
tions (most of these were summarized in ref. [c.l] below) which
were developed by Stenger under previous ARO support and in [a.17]
were used in algorithms developed by engineering co-workers, under
consultation with Stenger, to reduce the integral equation (1.1) to
a system of nonlinear algebraic equations. Both u and f were
computed iteratively at each point of V, each increasing in accu-
racy after every iteration. Besides having obvious advantages for
purposes of approximating solutions of differential and integral
equations (see [c.1]) the Sinc approximation procedures have the
additional desirable feature that they can tolerate an incredibly
large amount of noise in the data, such as, for example, a 12%
noise to signal ratio.
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In future developments of these algorithms it is hoped that
v4 the efficient method of obtaining the forward solution to Eq. (1.1)

which was developed in W. Faltenbacher's thesis (see above) may be
used to further increase the efficiency of the iterative method of
solution referred to in the above paragraph.

4.3. The Study of Transients in Forward Solutions

The work of the papers [a.14,a.15) above mainly involved
the advancement of geopysicists art of "interpretation" via a new
technique of studying the transient response. At this point, we
have not attempted to combine the new results of these papers for
purposes of developing new direct methods of inversion.

REFERENCE
c.1 Numerical Methods Based on the Wiittaker Cardinal, or Sinc

Functions, SIAM Rev. 23 (1981) 165-224.

4.

.4"

'.

b . .. * * * * - 4 * * .

*.-/ . .. / '- ,... . , '. ...- '.-. .-. .-.. 4'-* " 4- .. . .-... ,. ". •.-.. -.. ,,- .- .. - . ... -.. ". '." ' '. . -,



~. A P ~ , - -. - - .woo=

'4ww


